Устройства плавного пуска электродвигателя: функции, виды и стоимость решений
Электродвигатель — это незаменимое оборудование в современном мире высоких скоростей. В настоящее время наибольшее распространение в промышленных целях получил асинхронный двигатель переменного тока, который стал популярен благодаря своей простоте, неприхотливости в использовании, высокому КПД и экологической безопасности.
Однако, у него есть свои особенности. В момент запуска электродвигателя возникают две основные проблемы: высокий пусковой ток и значительная нагрузка на механические узлы приводимого в действие оборудования. Кроме того, высокий пусковой ток создает значительную нагрузку на питающую сеть, что может привести к ухудшению ее качества и проблемам в работе других приборов. Резкий рывок при запуске также может сократить срок службы механических узлов приводимого в действие оборудования.
Для решения этих проблем были созданы устройства плавного пуска (УПП). Они позволяют уменьшить пусковой ток и постепенно нарастить скорость вращения двигателя, что снижает нагрузку на механические узлы и позволяет избежать резких рывков. Устройства плавного пуска также снижают нагрузку на питающую сеть и улучшают ее качество.
Выбор устройства плавного пуска зависит от требований конкретного оборудования и характеристик электродвигателя. Устройства могут быть разных типов и иметь разные параметры, но их основная задача остается неизменной: обеспечение безопасного и эффективного запуска электродвигателя.
Устройство плавного пуска (УПП) – это специальное устройство, которое предназначено для решения проблем, связанных с пуском электродвигателей. Как правило, основным недостатком пуска напрямую от сети является скачкообразная подача напряжения питания на двигатель. Обмотка статора двигателя имеет малое омическое сопротивление, а рабочее индуктивное сопротивление устанавливается только в момент выхода двигателя в «режим». В промежуток времени с момента включения в сеть до выхода двигателя в «режим» сопротивление очень мало и сила тока сильно возрастает. В результате получаем высокий пусковой ток, который достигает 6-8 или даже 10-12 кратного увеличения номинального тока потребления.
Для решения проблемы необходимо ограничить пусковые токи и осуществить плавный разгон двигателя до номинальных режимов. Использование УПП позволяет снизить нагрузки на механические узлы и значительно увеличить срок службы оборудования. Кроме того, УПП способен устранять рывки в механической части электропривода в момент запуска электродвигателей, а также гидравлические удары в трубопроводах и задвижках в момент пуска и остановки насосов.
Поэтому использование УПП является рациональным решением для предотвращения поломок и повышения надежности работы оборудования.
Принцип работы устройства плавного пуска асинхронного электродвигателя основан на подаче управляющего напряжения на тиристоры, которые проводят ток после подачи напряжения и закрываются при прохождении значения тока через ноль. Таким образом, тиристоры, являющиеся основным конструктивным элементом устройства, соединяются по симисторной схеме для каждой фазы трехфазной системы.
В нужные моменты времени управляющее напряжение подается на управляющие электроды всех тиристоров, благодаря чему напряжение на силовых клеммах электродвигателя можно регулировать. При этом, поскольку крутящий момент электродвигателя является функцией квадрата приложенного напряжения, возникает возможность регулировать механические нагрузки в электроприводе. Также возможно плавное остановление электродвигателей, приводящих в действие низкоинерционные нагрузки.
Однако, такие устройства могут справляться только с невысокими нагрузками или запуском двигателя вхолостую. При увеличении времени запуска возникает опасность перегрева двигателя и полупроводниковых элементов устройства, которые также могут выйти из строя. Кроме того, снижение напряжения приводит к снижению крутящего момента на валу.
Более новейшие устройства плавного пуска отличаются отсутствием указанных недостатков и делятся на амплитудные и частотные. Хотя последние дороже и сложнее в установке и наладке, их использование оправдывает себя при эксплуатации в условиях, когда для решения задач необходимо изменять скорость вращения электродвигателя.
Варианты УПП
Существует два основных типа устройств плавного пуска:
- Регуляторы напряжения без функции обратной связи
- Регуляторы напряжения с функцией обратной связи
Регуляторы напряжения без обратной связи
Это наиболее распространенный тип устройств плавного пуска. Регулировка напряжения может осуществляться по двум или трем фазам, однако это происходит по заданным пользователем параметрам. Эти параметры включают время и начальное напряжение запуска. Благодаря этому устройства могут уменьшить пусковой ток и момент, а также обеспечить плавную остановку. Тем не менее, момент не регулируется в зависимости от нагрузки на двигатель.
Регуляторы напряжения с обратной связью
Они являются усовершенствованной версией предыдущей группы. Они контролируют фазовый сдвиг между напряжением и током в обмотках статора и используют полученные данные для регулировки напряжения на клеммах двигателя. Это гарантирует запуск наименьшим значением пускового тока и достаточным значением механического крутящего момента. Кроме того, полученные данные используются для защиты от перегрузки, дисбаланса фаз и других параметров.
Прогрессивные УПП
Прогрессивные УПП имеют следящие цепи, которые контролируют нагрузку в каждый конкретный момент времени. Эти устройства подходят для приводов, характеризующихся тяжелыми и очень тяжелыми пусковыми режимами, для которых обычно используют преобразователи частоты. Более того, данные устройства позволяют снизить энергопотребление.
Применение устройств плавного пуска
В настоящее время устройства плавного пуска (УПП) широко используются во всех областях, где работают электродвигатели. Однако, при выборе конкретного устройства необходимо учитывать нагрузку на двигатель и частоту его запусков.
Если нагрузка на двигатель невелика, а запуск происходит редко (например, в шлифовальных станках, некоторых вентиляторах, роторных дробилках, вакуумных насосах), то для этих целей подойдут регуляторы без обратной связи или регуляторы пускового момента.
В случае, когда требуется работа с высокой нагрузкой, с частым и инерционным запуском (как, например, в ленточной пиле, центрифуге, сепараторе, распылителе, лебедке, вертикальном конвейере), целесообразно выбирать регуляторы напряжения с обратной связью и, возможно, с запасом по номиналу.
Однако следует помнить, что в Европе законодательно запрещено запускать электродвигатели мощностью 15 кВт и выше, если они не оснащены устройствами плавного пуска.
Цены на софтстартеры и их нестабильность в последние годы являются неотъемлемыми компонентами рынка. По словам экспертов, подобное явление вызвано высокой стоимостью импортных товаров, в том числе и продукции многих отечественных компаний, производящихся за рубежом или изоляционных материалов, выпускаемых в России на основе импортных комплектующих. Из-за нестабильности валют наблюдаются колебания цен на софтстартеры.
Уровень стоимости софтстартеров напрямую зависит от их характеристик. Некоторые модели, начиная от 7 тысяч рублей, могут иметь заданный номинальный ток. Но более мощные модели, стоимость которых может достигать 700 тысяч рублей, позволяют равномерно распределить ток до 1200 А.
Фото: freepik.com